Math 150, Lecture Notes- Bonds Name

Section 2.4 The Chain Rule

THEOREM 2.10 The Chain Rule

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable
function of x, then y = f(g(x)) is a differentiable function of x and

dc  du dx

or, equivalently,

L] = Fet)e ).

Let h(x) = f(g(x)). Then, using the alternative form of the derivative, you
need to show that, for x = ¢,

h'(c) = f(glc))g (o).

An important consideration in this proof is the behavior of g as x approaches c.
A problem occurs if there are values of x, other than c, such that g(x) = g(c).
Appendix A shows how to use the differentiability of f and g to overcome this
problem. For now, assume that g(x) # g(c) for values of x other than c. In the proofs
of the Product Rule and the Quotient Rule, the same quantity was added and subtracted
to obtain the desired form. This proof uses a similar technique—multiplying and
dividing by the same (nonzero) quantity. Note that because g is differentiable, it is also
continuous, and it follows that g(x) — g(c) as x —c.
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= f(g(c))g (c) n

When applying the Chain Rule, it is helpful to think of the composite function
f° g as having two parts—an inner part and an outer part.

Outer function

/

y = flgl) = f(u)

N/

Inner function

The derivative of y = f(u) is the derivative of the outer function (at the inner function
u) times the derivative of the inner function.

y' = - u



Ex.1 Writing the decomposition of a composite function.

y = flgx)) u = gx) y = fw)
ay= ! u=x+1 y=l
x+1 u
b. y = sin 2x u=2x y =sinu
c.y=V3x*—-x+1 u=73x2—-x+1 y=Ju
d. y = tan®x u = tan x y = u?

4

Ex.2 Find the derivative of y = ?{Z—xs .
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THEOREM 2.1l The General Power Rule

If y = [u(x)]", where u is a differentiable function of x and n is a rational
number, then

dy

_,\' —_ n—1 ﬂ
I n[u(x)] I

or, equivalently,

%[u”] =nu""'u’

Because y = ", you apply the Chain Rule to obtain
- (e
dx du)\dx
d du
" du Lu ]dx'
By the (Simple) Power Rule in Section 2.2, you have D, [u"] = nu”~', and it follows

that

dy du

o nlu(x)]—! e [ ]



Ex.3 Find the derivative of g(t)= 89— .
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Summary of Differentiation Rules
General Differentiation Rules Let f, g, and u be differentiable functions of x.

Constant Multiple Rule: Sum or Difference Rule:

d < d i ‘

—[cf] = ¢f el =i

dx dx

Product Rule: Quotient Rule:
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Derivatives of Algebraic Constant Rule: (Simple) Power Rule:
Functions d d

=0 —[x'] = '_n—l, —[x] =1

tlll' ol ([\'[ Il = zl.\'l |
Derivatives of Trigonometric diel L d i d
A (["‘[sln.\] = COS X d.x[tdn x] = sec2x dx[.sec x] = sec x tan x

d : d 5 d

cos x| = —sinx cotx] = —csc’x csc x| = —csc x cot x
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Chain Rule Chain Rule: General Power Rule:

d d

—[fw)] = f(u) u’ —[w"] = nu"="u’
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Ex.5 Find on the graph of f(x)= (x - 1) for which f’(x)=0 and those for which f’(x)

does not exist.
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Ex.6 Find the derivative of y =
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Ex.7 Find the derivative of h( ) 3
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Trigonometric Functions and the Chain Rule

The “Chain Rule versions” of the derivatives of the six trigonometric functions are as
follows.

a[sin u] = (cos u) u a[cos ul = —(sin u) u

2 — 2 a — (e

e [tan u] = (sec?u) u e [cot u] (csc?u) u
E[SCC u] = (sec utan u) u a[csc u] = —(cscucot u) u

Ex.8 Applying the Chain Rule to Trigonometric Functions

’

u COoS u u

/\ —_— D s
a. y = sin 2x y’ = cos 2xd% [2x] = (cos 2x)(2) = 2 cos 2x
b. y = cos(x — 1) y’ = —sin(x — 1)

c. y = tan 3x y’ = 3sec?3x



Ex.9 Derivatives, Parentheses, and Trigonometric Functions
Find the derivative of the following functions:

(1) ¥ = cos 3x* = cos(3x?)

b V= (cos 3)x2
(c) ¥ = cos(3x)? = cos(9x?)

d Y= cos?x = (cos x)?
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Ex 11 Find the derivative of g =COS Sln(tan(ﬂe))
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Ex.12 Evaluate the second derivative of g(@) = tan(29) at (%,\/5 j )
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Ex.13 Find the equation of thé tangent line to the graph of f

(x)=2sin(x)+cos(2x) at (7:,1)./

Then, find all values of x in (O, 275) at which the graph of f has a horizontal tangent.
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Ex.14 Given h(x):f(g(x)) and S(x): g(f(x)), use the graphs of fand ¢ to find the

. e e r [
following derivatives: [A KCK) _ _F /@9 6()} . ﬁ /[K) SIGQ =9 Cpoa) . 100()
(a) Find 1'(3).

(b) Find 5'09) hz\= £law)-90)
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Ex.14 Given h(x): f(g(x)) and s(x) = g(f(x)), use the graphs of fand ¢ to find the
following derivatives:

(a) Find h'(3).

(b) Find s(9).




Ex.14 Given h(x): f(g(x)) and s(x) = g(f(x)), use the graphs of fand ¢ to find the
following derivatives:

(a) Find h'(3).

(b) Find s(9).




